16x^2+1=40x

Simple and best practice solution for 16x^2+1=40x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 16x^2+1=40x equation:



16x^2+1=40x
We move all terms to the left:
16x^2+1-(40x)=0
a = 16; b = -40; c = +1;
Δ = b2-4ac
Δ = -402-4·16·1
Δ = 1536
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1536}=\sqrt{256*6}=\sqrt{256}*\sqrt{6}=16\sqrt{6}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-16\sqrt{6}}{2*16}=\frac{40-16\sqrt{6}}{32} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+16\sqrt{6}}{2*16}=\frac{40+16\sqrt{6}}{32} $

See similar equations:

| a/3+3=-5 | | t/4+36=43 | | 1=0.3(10x-3) | | 2/5x+1=10 | | 3x+2x+4=6(x-1) | | 12x+3010x-57x+10=180 | | 3x-12=6x-118 | | 6=j/4+3 | | -2n-17=3 | | (x-10)-2=6 | | -8(-3m-3)=6m+3(6m+7)+3 | | 3k-2=-k-10 | | 14=9-g | | 3(2x+2)=6x+2 | | 5(m+15)=-90 | | 0.5•16+x=16 | | -3(y-5)=4 | | 3x-(2x+5)=12 | | 10-3d=19 | | n-20=(-60) | | 3(z-2)=5z+1= | | 3(x+5)+8=22 | | 19x-1/2=6 | | 4x+2=2x–10 | | 5(2x+8)=-47+27 | | 39.99+.45x=44.99-40x | | x^2+6=36+x | | 8b=9b−8 | | 3x-15+-x-17+4x+4=180 | | 9z+5-4z=9+4z-7 | | 6j-15=39 | | 136+(6x+8)=180 |

Equations solver categories